Traveling Wave Solutions for Bistable Fractional Allen-cahn Equations with a Pyramidal Front
نویسندگان
چکیده
Abstract. Using the method of sub-super-solution, we construct a solution of (−∆)su − cuz − f(u) = 0 on R of pyramidal shape. Here (−∆)s is the fractional Laplacian of sub-critical order 1/2 < s < 1 and f is a bistable nonlinearity. Hence, the existence of a traveling wave solution for the parabolic fractional Allen-Cahn equation with pyramidal front is asserted. The maximum of planar traveling wave solutions in various directions gives a sub-solution. A super-solution is roughly defined as the one-dimensional profile composed with the signed distance to a rescaled mollified pyramid. In the main estimate we use an expansion of the fractional Laplacian in the Fermi coordinates.
منابع مشابه
Traveling Wave Solutions of some Nonlinear Evolution Equations by Sine-Cosine Method
In this paper, we established traveling wave solutions of the nonlinear evolution equation. The sine-cosine method was used to construct travelling wave solutions of the Fitzhugh-Nagumo equation and Cahn-Allen equation. Graphical interpretation shows that obtained results include periodic and Soliton wave solutions. It is also shown that for α =−1, solutions of Fitzhugh-Nagumo equation coincide...
متن کاملExact solutions of distinct physical structures to the fractional potential Kadomtsev-Petviashvili equation
In this paper, Exp-function and (G′/G)expansion methods are presented to derive traveling wave solutions for a class of nonlinear space-time fractional differential equations. As a results, some new exact traveling wave solutions are obtained.
متن کاملStability of Front Solutions of the Bidomain Equation
The bidomain model is the standard model describing electrical activity of the heart. Here we study the stability of planar front solutions of the bidomain equation with a bistable nonlinearity (the bidomain AllenCahn equation) in two spatial dimensions. In the bidomain Allen-Cahn equation a Fourier multiplier operator whose symbol is a positive homogeneous rational function of degree two (the ...
متن کاملEntire Solutions in Lattice Delayed Differential Equations with Nonlocal Interaction: Bistable Cases
This paper is concerned with entire solutions of a class of bistable delayed lattice differential equations with nonlocal interaction. Here an entire solution is meant by a solution defined for all (n, t) ∈ Z × R. Assuming that the equation has an increasing traveling wave front with nonzero wave speed and using a comparison argument, we obtain a two-dimensional manifold of entire solutions. In...
متن کاملMultiple Layered Solutions of the Nonlocal Bistable Equation
The nonlocal bistable equation is a model proposed recently to study materials whose constitutive relations among the variables that describe their states are nonlocal. It resembles the local bistable equation (the Allen-Cahn equation) in some way, but contains a much richer set of solutions. In this paper we consider two types of solutions. The first are the periodic solutions on a finite inte...
متن کامل